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Abstract 

We discuss two classes of theories that have something to say about 

fourth generation quark and lepton masses (as well as Higgs). One is 

based upon universality of low energy parameters as determined by the 

renormalization group: infra-red fixed points. The other is a toy model 

of geometric heirarchy which may arise in a novel scheme of dimensional 

reduction without compactification. 

‘Invi2cd Talk, Fourth Gcncrlrtion Workshop, Sania Monica, C&if., Feb. 1987 

Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



-l- FERMILAB-Co&87153-T 

I. Introduction 

A major problem of modern particle physics is to understand the origin and to 

compute the values of the quark and lepton masses and mixing angles. It is not 

clear that this will be possible in short order since, if considerations from grand 

unified theories are relevant, the details at inaccessibly high energy scales may be 

involved. Furthermore, the mechanism that breaks the electroweak symmetries is 

fundamentally distinct form the mechanism that produces the masses (certainly 

this is true in the standard model since the Higgs-Yukawa couplings are par-e- 

ters independent of the gauge couplings and Higgs potential; in many models this 

distinction is maintained). 

Nature may oblige us with helpful new information at the TEV scale which 

sheds light on The Theory. However, there is another interesting possibility which, 

with a fourth generation, becomes somewhat likely: heavy quark and lepton masses 

are unioersal. That is, perhaps the details of the origin of the Higgs-Yukawa cou- 

plings are buried at the GUT scale, but are irrelevant in determining the masses 

measured at low energies due to the evolution of the parameters by the renormal- 

ization group. The low energy values may essentially be fixed points and can be 

computed by a knowledge of the (i) renormalization group equations up to the 

GUT scale (ii) existence of a desert (this is really a simplifying assumption) (iii) 

existence of sufficiently heavy fermions which are governed by these fixed points. 

This idea was first proposed by Pendleton and Ross [I] and subsequently refined 

and applied to the fourth generation in ref.[2]. We shall review the application of 

tixed points to fermion masses, mixing angles, and the Higgs system for which the 

ideas apply and suggest natural scales 131. We emphasize that the natural scale for 

Higgs-Yukawa couplings in superstring inspired models is already large (zz ggoupr) 

and this possibility is quite plausible there. 

There are many other theories of mass and mixing angles, including horizontal 

unification, extended technicolor, etc. We will not discuss these at present but 

rather propose a novel idea based upon the essential teachings of superstrings and 

Kalusza-Klein theories on the problem of fermion masses: fermions emerge as sero- 

modes on the compact manifold associated with dimensional reduction and the 

number of families is associated with a topological index. Little has been done to 
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understand the resulting systematics of muses and mixings. We will show how a 

geometric heirarchy might emerge from a novel realization of these ideas. 

II. Renormalization Group Fixed Points 

Consider the evolution of the Higgs-Yukawa coupling constant of a standard model 

+2/3 charged quark. The renormalization group equation is: 

Dlng+zp = $&/3 - $?1/3 + c s: 17 

CA ,louor. 
- 8s: - ;g: - ,,g: (2.11 

where 167i*D = d/d In E. We may translate this into an effective %unning mass” 

by multiplying the coupling constant by the Higgs VEV of 175 Gev. The resulting 

evolution given by es.(l) from a large scale, presumeably the GUT scale, for various 

choices of initial value is seen in Fig.(l). H ere we consider two candidate GUT 

scales, MX = 1Or5 Gev and MX F; 1Org Gev. We notice that for a wide range 

of of initial values the resulting low energy top quark mass is universal, i.e., it is 

insensitive to the choice of initial value and it is insensitive to the choice of GUT 

mass. We would predict at one loop m,,,h Z=Z 240 GeV. Fischler and Oliensis [4] 

have given a comprehensive twoloop analysis and obtain 224 < rr~+,.~~ < 232 GeV 

with Aws = .16 Gev. Also, to one loop we may compare supersymmetric SU(5) 

which yields mpuark z 205 Gev [S]. Such a prediction for the top quark mass cannot 

yet be ruled out by experiment, though it may be in conflict with the best estimates 

of the weak isospin splitting permitted by the p parameter IS]. Moreover, some other 

considerations in standard GUTology may be relevant [7] 

This may be stated another way; given no a priori knowledge of the value of the 

quark mass at Mx, i.e. a flat distribution of initial values at Mx, we determine 

the probability distribution at low energies ss in Fig.(2). We see it is peaked at the 

6xed point, which corresponds to an upper limit rxs first discussed in ref.[8]. 

We turn to the fourth generation and consider the evolution equations (assuming 

a massless neutrino) 121: 

Dln(gT) = Eg: + igi + g* E - Sg,2 - ;g; - ;g: (2.2) 
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(2.3) 

Dln(gn) = Egi + 39: + 39: - 92 152 
q92 - p!h 

We have here set all Cabibbo angles to zero. The results of a numerical inte- 

gration are best presented as scatter plots for various initial points as shown in 

Fig.(3). It should be noted that no particular point on the fixed 2-surface in 

the 3-spate of the 3 coupling constants is particularly favored, though the point: 

UP - 220 (204); down - 215 (198); lepton - 60 (68) Gev, appears to be an 

attractor (we give some two-loop results from 141 in parentheses). There is in- 

sufficient running time to significantly attract the three couplings to this point. 

However, the surface is definitely non-spherical; yet one can simply quote a sum 

rule [S]. Knowledge, however, of two masses determines the third. 

III. Application to the Higgs Sytem 

It is quite interesting to apply these ideas to the Higgs system 13). First we consider 

a single doublet and then generalize to the case of the two-doublet model. 

First we assume the standard potential: 

V(9;) = -$I&[ + ;lqYm12 

whence Y* = m&/X = (175 Geu)2 and the Kiggs boson has mass mz = u2X Hence, a 

knowledge of X determines the Higgs boson msss and X is governed by a logarithmic 

renormalization group. We find for X the RG equation: 

DA = 12X2 - 3A(g; + 39;) + 3g;/2 + 3(gf $ g;)‘/4 

i4q3g: + 39; + 9:) - 4(3gj + 39: + 9:) (3.2) 

where we have included the contributions from a single heavy generation. 

Curiously, we find that if we set the fermion contributions to zero (all fermions 

assumed light) then DA > 0 and since we are descending in energy from a pre- 

sumed Mx small initial X values can be driven negative. Mass scales at which 
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X becomes negative are essentially Coleman-Weinberg symmetry breaking scales. 

This is shown in Fig.(4). Moreover, there is no real 6xed point as described above, 

but there is a practical upper limit to the low energy value of X and thus an upper 

limit on the Higgs msss. This is no longer universal, Fig.(5). 

Allowing for a single heavy quark we may study the joint evolution of the Higgs- 

Yukawacoupling, eq.(l) (there is no backreaction of the Higgs quartic coupling onto 

the Higgs-Yukawacoupling). This is indicated in Fig.(G). Thus, at the Sxed lime 

we may construct a relationship between the Higgs mass and the quark mass valid 

for mpuork > 100 Gev as shown in Fig.(7). 

We turn now to the twodoublet model which has the general potential: 

k&h442 + ~.I’&~2 + ~ei’(&2)2 + h.c. (3.3) 

There are obvious quartic stability constraints: 

Xl, x2 >o (3.4) 

and several others involving v?& for various ranges of the other parameters [3]. 

Finally, there are ten ways of sewing the two doublets together with a generation 

of quarks and leptons (modulo & * &), such as (this is a fairly obvious notation; 

schemes I. through X. are listed in ref.[3]; no coupling may be viewed as coupling 

to light fermions and we always assume a light neutrino): 

(;;)c(;j 1. c::,ij) =- ... (3.5) 

Since we have nothing to say about the evolution of the masses, we use as input 

parameters the known combination, u: + v2 - 2 - (175 G~u)~ and an unknown vacuum 

angle, tan 0 = vr Jvr. 

Now we must face several issues with the twodoublet model: 

1. Why is the breaking ferromagnetic, tl as opposed to tJ, so as to preserve 

the U(~)EM ? This requires X, < 0, so why should such a value be naturally 

selected? 
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2. Are the quartic stability constraints naturally respected by evolution across 

the desert (if not we get Coleman-Weinberg at the appropriate scale)? 

3. The model admits an axion in the ferromagnetic breaking when X5 = 0. Is 

there anything special, or natural, about that value? 

4. Does the model admit infra-red RG fixed points? 

In fact we find that the RG behavior of the theory is interesting only in the 

presence of a heavy quark or lepton (or both) and appears to develop quartic insta- 

bilities otherwise. For example, the evolution of the quartic coupling constants is 

plotted in Figs.(8a-b) in scheme (I). Remarkably, X1 < 0 occurs naturally as a fixed 

point result. Also, though there is insufficient evolution time to produce a bonafide 

low mass axion, the coupling Xs is driven small and we get a neutral pseudoscalar 

as the lightest Higgs boson. Hence, Xs = 0 is a stable IR fixed point. The heavy 

neutrals have mssses at the fixed point determined up to V~/VZ, Fig.(S). In Table I 

we give the other masses at this fixed point, again for scheme I. Here, in addition 

to a heavy fourth generation, we include the effects of the top quark. 

For comparison, if there are no heavy > 100 Gev fermions, the evolution of 

the parameters is unstable, [3]. In terms of a reasonable fundamental theory in the 

presence of the desert the two Higgs doublet scheme (and presumeably multi-Higgs) 

seems to make sense only in presence of a fourth generation. 

IV. Topological Theory of Masses and Mixing 

Angles 

One of the major lessons of compactified higher dimensional unified theories, such 

as Kalusza-Klein and Superstring models is that the low energy laboratory fermions 

may be (i) zerwmodes on a compactified manifold and generally (ii) the number 

of generations is determined by an index theorem on the compactified manifold. 

This latter point is important since the parent higher dimensional theory may have 

only one fermionic field which %pawn? the larger observed number of genera- 

tions. There has been, however, little understanding to date as to how the fermion 

mass matrix arises, how it may lead to an approximate geometrical mass heirarchy, 
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and how the texture of the CKM matrix emerges. Here we give some preliminary 

sketches ss to how these questions may be answered. Furthermore, we choose to 

study a modified problem which may either be viewed as a laboratory for the study 

of compactified higher dimensional theories or as a fundamentally new approach to 

dimensional reduction without employing compactijication. 

Spontaneous symmetry breaking of gauge theories can give rise to objects such 

as solitons, vortices, and monopoles. In D space dimensions the generalization of 

the flux tube is to a D - 2 dimensional object and the solutions go over directly. If 

fermions obtain a mass by coupling to the complex scalar field of an abelian vortex, 

massless states localized on the vortex, known ss Jackiw-Rossi zero-modes, can 

exist. Here a single fermion field in higher dimensions spawns n zeremodes if the 

vorticity of the flux tube is n. Presumeably higher spin local bosonic condensates 

can give vector and spin-2 zero-modes, candidate effective Yang-Mills and gravi- 

tational fields, in a manner analogous to Witten’s bosonic superconducting strings 

IW 
An intriguing possibility then arises. If the Universe is actually an infinite 

1 + D spacetime, there might occur such objects in such a Universe. The scale of 

symmetry breaking forming the soliton, M. may be quite large, M, >> MW and 

probably M, - Mplnnck. The trapped zero-mode fermions would then be described 

by an effective 1 + D - d theory and we choose D - d = 3 to correspond to the 

observed physical Universe. Thus, we have dimensionally reduced the world without 

compactifying the cztra dimensions. 

The vortex is a non-trivial axially symmetric configuration of a complex scalar 

field 4 and an optional gauge field A which we set to zero. The scalar field will 

be taken as a fixed c-number of the form: d(r) = c’“f (r), where, (r,e,.z) are 

cylindrical coordinates normal to the string. For definiteness, we will take n > 0. 

The asymptotic forms of the fields are f(r) + 0 for r + 0 and j(r) -+ f. for r -+ CXJ. 

The simplest way to exhibit the heirarchy phenomenon is to write the Lagrangian 

for the fermions: 

L = i+‘@ + ix’& + iAt+ + St+5 

+igb(r, 19)@q - igQ(r, B)XTc6 

+ ha(7pd + XTd) + h..? + L(a) (4.1) 



-7- FERMILAB-Conf-g7/53-T 

$J, x, X and 6 are 2-component (left-handed Weyl) spinors. Here o is a scalar field 

which develops a VEV localized on the string, (u) = us exp(-nr). This is analogous 

to Witten’s bosonic superconducting string [lo] and can easily be engineered by 

dynamics. It is presented here to simplify the arguments to come and is not essential 

for the present effect (we can set g = g’ with the o condensate; alternatively we can 

generate the geometric hierarchy with o = constant and g’ >> g). 

Far from the flux tube the Higgs field may be regarded as having a constant 

VEV. Then we see that the pairs of Weyl spinors, (+$, x) and (X, 6) form two four- 

component massive Dirac fields. On the vortex there occur Jackiw-Rossi zero-modes 

and ($, x) produce n chiral left-movers while (X, 6) produce n china1 right-movers 

for a vorticity n. 

For any vorticity n we have to a good approximation the sequence of normalized 

zero-modes from p = 0 to p = zt(n - 1): &, = &(r)a(r,t)# and one 6nds that 

the P,(r) have the behaviors: 

D,(r) --+ 4 r + 0; &(r) t e-lgfolr r-+00 (4.2) 

We shall assume n >> ]gfe], i.e., the radial profile of the D condensate varies rapidly 

compared to the fermionic zero modes. This simply requires a choice of small g. 

Let us now consider the effects of the mass terms. We may now compute the mass 

matrix for the fermionic zero modes by integrating the transverse wave-function 

radial profile as given in eq.(4.2): 

MPP = / 
r dr dBp,/3,‘huoe-“‘c’(P-*)~ (4.3) 

Clearly, owing to the angular dependence of the modes, the mass-matrix is diagonal; 

that is, generation number is topologically conserved at this level and no flavor 

mixing occurs. We see, however, that a geometrical heirarchy emerges: 

Mpq a 2$6, 
I 

r dr rlzPboe-cr = 6,&pc1zPC1’ 

where c - Isfol/n << 1 and Kp - 1. (We have numerically solved the trans- 

verse Dirac equation and verified that thii heirarchy does indeed occur; the KP are 

interesting for making model predictions and must be determined numerically [ll]). 
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Mixing can occur by introducing higher dimension operators into the Lagrangian 

as fermionic mass terms, but also involving the vortex Higgs. For example, we 

might add terms involving $t@r$ and $t@3$, etc. to pairs of Weyl spinors with 

the appropriate charges (this requires introducing different charged fermions). Such 

terms will naturally be suppressed by l/M~ovy, l/ML.vs, etc. These terms will lead 

to mixing between families and a rudimentary KM matrix emerges. 

Of course, the principal difficulty is to give a convincing explanation of gravity 

and Yang-Mills fields trapped on the flux tube. These issues will be addressed in a 

forthcoming paper Ill]. 
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Table I. Higgs Masses (Gev) at the Fixed Point (Scheme I): 

Figure Captions 

1. Evolution from (A) lOis Gev and (B) 10lg Gev of effective mass of single heavy 

i-213 charge quark. 

2. Probability distribution of masses of heavy quark with equal liklihood of any 

mass as defined at Mx. 
3. Scatter plots of gl, gb gr from inital array at Mx (integer initial values). 

4. Higgs-quartic coupling integrated from 10 I9 Gev. Coleman-Weinberg break- 

ing effectively occurs at zero crossing. 

5. Evolution of Higgs effective maSs from 10 is Gev. No apparent fixed point 

occurs in absence of heavy fermions. 

6. Joint evolution of large Higgs-Yukawa coupling and quartic Higgs coupling. 

7. Fixed line relationship between a heavy ‘t-quark= and Higgs boson masses. 

8. (A) Evolution of X1 and Xr in two doublet model for sample initial values 

(B) Evolution of X1 and X3 (C) Evolutionof Xi and X1; note ferromagnetic ( 

X4 < 0) fixed point occurs. 

9. Scheme I masses of neutral Higgs bosons in two doublet model. 
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